COMPUTER MODEL FOR BATTERY PASTE CALCULATIONS
I. G. MAWSTON

Yuasa JRA Batteries Ltd., P.O. Box 13-343, Onehunga, Auckland 6 (New Zealand)

Introduction

Paste mixes are formulated from various bases of knowledge and experience in the industry that take into account many parameters such as:

- type and nature of oxide
- free-lead content of oxide
- design and type of mixing equipment
- mix polarity (i.e., for negative or positive plates)
- intended use of battery plates, e.g., automotive, stationary, motive power.
- optimisation of various performance factors, e.g. active material utilisation at slow discharge rates, high-rate discharge voltage, climatic usezone.

It is not the intention of this paper to address all of these parameters as most are proprietary or variable, but rather to reveal physicochemical guidelines, or limits, that should be observed in the formulation or subsequent processing of paste. This can best be understood and illustrated by the use of a computer model.

With the exception of various minor additives, battery paste mixes are compounded from:

- leady oxide
- water
- dilute sulphuric acid.

These three constituents can be regarded as derived from the more fundamental chemical phases:

- $\mathrm{H}_{2} \mathrm{O}$, phase A
- PbO , phase B
- SO_{3}, phase C.

As such, the composition of a paste mix and the composition of the paste in a plate up to the end of the curing process can be mathematically and graphically represented on triangular graph paper [1]. The properties of this paper are such that (Fig. 1):
(i) the triangular graph is equilateral and is sub-divided into equi-spaced similar triangles;

Fig. 1. Ternary diagram for three phases A, B, C. $a=a_{1} /\left(a_{1}+a_{2}\right) ; b=b_{1} /\left(b_{1}+b_{2}\right) ; c=$ $c_{1} /\left(c_{1}+c_{2}\right) ; a+b+c=1$.
(ii) the fractional or the percentage amount of a phase, say A, in a mixture represented by a point P is equal to the ratio of the perpendicular distance of the point P to the opposite line $B C\left(a_{1}\right)$ and the perpendicular distance between A and its opposite side $\mathrm{BC}\left(a_{1}+a_{2}\right)$.
(iii) the sum of the three phases for any point is equal to 1 or 100%, depending on the chosen convention; in this model, the former notation has been chosen; thus, if the coordinates of any point P are a, b, c, then $a+b+c=1$.
It is worth noting from the outset those mixtures that are represented by points falling on the boundary lines of the triangle ABC. Thus, using Fig. 2;
(i) line $A-B$ represents suspensions, slurries and pastes consisting of water and lead oxide;
(ii) line A-C represents all strengths of sulphuric acid, including oleum and SO_{3};
(iii) line $\mathrm{B}-\mathrm{C}$ represents mixtures of lead oxide, basic and non-basic lead sulphates and SO_{3} gas; all these species are in the dry state.

Compositional changes during paste mixing

Initially, the mixture starts at point $\mathrm{B}(0,1,0)$, i.e., lead oxide (see Fig. 2). With water addition, a slurry is produced, whence the composition changes to point $\mathrm{P}_{1}\left(a_{1}, b_{1}, 0\right)$. When the acid addition is made to the slurry (using dilute sulphuric acid: sp.gr. $=1.4$, typically), SO_{3} is being added simul-

Fig. 2. Model of phase relations in processing of lead/acid battery pastes. Pathway $\mathrm{B} \rightarrow \mathrm{P}_{1} \rightarrow \mathrm{P}_{2} \rightarrow \mathrm{P}_{3}$: (1) PbO and $\mathrm{H}_{2} \mathrm{O}$ addition; (2) acid addition; (3) curing and drying. Note, no free lead in starting oxide.
taneously with the dilution water of the acid and the water arising from the reaction:
$\mathrm{PbO}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
At the end of acid addition, the composition is now represented by the point $P_{2}\left(a_{2}, b_{2}, c_{2}\right)$. The following should be noted:
(i) no allowance is made for water evaporation;
(ii) during acid addition, the composition moves along the line joining the point P_{1} to the point P_{g} on the line $A C ; P_{g}$ represents the composition of the acid used, having an sp.gr. $=g$; in other words, $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{g} are co-linear;
(iii) in both the model and the following sections, the free-lead content of the oxide has not been taken into account; free lead oxidation will be considered later as a refinement to the model.

Compositional changes during skin-drying/plate-curing

Within the restrictions of note (iii) immediately above, the effects of skin drying and curing in terms of nominal composition are merely to reduce the water content of the paste to zero. Hence, the composition of the dry plate is represented as shown in Fig. 3, by the point $P_{3}\left(0, b_{3}, c_{3}\right)$ on the line $B C$. It should be noted that the points A, P_{2}, P_{3} are co-linear.

Fig. 3. Model of plate drying/curing (point P_{3}) to give 3BS or 4BS.

The composition of the principal basic lead sulphate compounds, namely, tetrabasic ($4 \mathrm{PbO} \cdot \mathrm{PbSO}_{4}=4 \mathrm{BS}$) and tribasic ($3 \mathrm{PbO} \cdot \mathrm{PbSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}=$ 3BS) lead sulphate, that are of major importance in plate making are also represented by points on the line BC , i.e.,
$4 \mathrm{BS}=(0,0.933,0.067)$
$3 \mathrm{BS}=(0,0.918,0.082)$
Thus, if the coordinates of P_{3} are compared with the above, it can be ascertained whether the nominal composition of P_{3} is:
(i) on the 'oxide' side of 4BS and therefore on the oxide side of 3BS;
(ii) between 3BS and 4BS;
(iii) beyond 3BS, i.e., towards monobasic lead sulphate ($\mathrm{PbO} \cdot \mathrm{PbSO}_{4}=$ 1 BS). In the computer model, these relationships are measured and displayed by the variables X_{3} and X_{4}. A negative value of these parameters indicates P_{3} is on the SO_{3} side of the phase considered.

Effect of including free lead

To simplify the inclusion of free lead in the model, the following additional assumptions have been made. First, it is assumed that oxidation of free lead does not take place during either water or acid addition. Second, the points P_{1} and P_{2} (Fig. 4) are most expeditiously calculated by using the weight W_{1} for P_{1} and the weight W_{2} for P_{2}, where:

Fig. 4. Model of phase relations in preparation of lead/acid battery pastes as in Fig. 2 but including free-lead oxidation after paste formulation, i.e., pathway $\mathbf{P}_{\mathbf{3}} \rightarrow \mathbf{P}_{\mathbf{4}}$
$W_{2}=W_{1}(100-f) / 100$
where f is the percentage of free lead in the starting oxide. The 'oxide' weight is W_{1} while the PbO weight is W_{2} and takes into account the percentage of free lead. During plate drying and curing, when free-lead oxidation does take place, the model can be used and the results interpreted as water loss and PbO generation occurring sequentially or, more realistically, these processes occurring simultaneously.

Compositional changes during plate curing: incorporating free-lead oxidation
Four points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$ representing sequential compositions are calculated (Fig. 4). The points correspond to the following paste-processing stages:

- P_{1} - water addition, reduced amount of PbO as before (Fig. 2)
- P_{2} - acid addition
- P_{3} - plate drying from P_{2} as before (Fig. 2)
- P_{4} - free-lead oxidation moving P_{3} up the line BC towards the PbO end-point, B.
Thus, the process pathway is $\mathrm{B} \rightarrow \mathrm{P}_{1} \rightarrow \mathrm{P}_{2} \rightarrow \mathrm{P}_{3} \rightarrow \mathrm{P}_{4}$.
Figure 5 represents the situation when free lead is included in the paste formulation so that there is simultaneous drying and oxidation of free lead

Fig. 5. Model of phase relations in preparation of lead/acid battery pastes as in Fig. 2 but including free lead in formulation. Pathway $P_{1}^{\prime} \rightarrow P_{2}^{\prime} \rightarrow P_{3}^{\prime}$ represents simultaneous drying and free-lead oxidation. Pathway $P_{1}^{\prime} \rightarrow P_{2}^{\prime} \rightarrow P_{3} \rightarrow P_{3}^{\prime}$ represents sequential drying and free-lead oxidation.
during the curing stage. The process pathway is now $\mathrm{B} \rightarrow \mathrm{P}_{1}{ }^{\prime} \rightarrow \mathrm{P}_{2}{ }^{\prime} \rightarrow \mathrm{P}_{3}{ }^{\prime}$. By comparison, the pathway for sequential oxidation is $B \rightarrow P_{1}{ }^{\prime} \rightarrow P_{2}{ }^{\prime} \rightarrow P_{3} \rightarrow$ $P_{3}{ }^{\prime}$. The relative rate of water loss versus lead oxidation determines the practical pathway, which will be intermediate between the simultaneous and sequential routes.

Process pathway limitations

When water is added to oxide, there is a maximum amount beyond which the mixture becomes 'too wet'. This water limit is basically established by the properties of the oxide, but when found, it can be represented on the phase diagram by a line $W_{L}-W_{L}^{\prime}$ that is parallel to the line $B C$ (see Fig. 6).

It is a well known fact that the presence of monobasic lead sulphate, or indeed lead sulphate itself, is highly undesirable in paste mixes - either in a localised or on an overall compositional basis. It follows, therefore, that an acid limit line $A_{L}-A_{L}{ }^{\prime}$, joining 3BS to A can be established (Fig. 6). For the purpose of discussion, the composition of $3 B S$ has been set as this limit, i.e., any other point nearer to the SO_{3} phase is considered to be undesirable. The intersection of line $A_{L}-A_{L}{ }^{\prime}$ with $W_{L}-W_{L}{ }^{\prime}$ has been labelled $P_{\text {WAL }}$ (Fig. 6).

Fig. 6. Process pathway limitations.
By constructing phase diagrams that either include (Fig. 5) or exclude (Fig. 2) the presence of free lead in the starting oxide, a comparison can be made that reveals whether the expected paste-mixing variables will cause permanent or transient undesirable compositions and properties.

Computer model

The calculations required to determine the (a, b, c) coordinates of the required points were performed on an IBM compatible computer using the proprietary software package TK! Solver ${ }^{\ominus}$. These equations and a typical model printout are shown in Tables 1-4.

To display these results in graphical form, a secondary model again using TK! Solver ${ }^{\ominus}$, as well as Lotus $1-2-3$ was constructed to perform the triangular (a, b, c) coordinate transformation to the required cartesian (X, Y) coordinate system. Details of the equations of transformation and their derivation are shown in the Appendix. For convenience and simplification, the point A is located at the cartesian origin and the line A-C lies on the X axis. This gives the following coordinates (X, Y) for the three principle phases (Fig. 7):

$$
\begin{aligned}
& \mathrm{A}(0,0)=\text { water } \\
& \mathrm{B}(2 \alpha, 0)=\text { lead oxide } \\
& \mathrm{C}(\alpha, \sqrt{ } 3 \alpha)=\text { sulphur trioxide }
\end{aligned}
$$

where α is a convenient scale factor.

Fig. 7. Relationship between triangular and cartesian coordinates.

TABLE 1

Mathematical rules used to compute paste phase composition

S Rule

* $\quad o=o x^{*}(1-\% / 100)$
* $\% \mathrm{PbO}=100 * o \mathrm{x} /(\mathrm{ox}+\mathrm{w})$
* $\% \mathrm{H} 2 \mathrm{O}=100^{*} \mathrm{w} /(\mathrm{ox}+\mathrm{w})$
* $\% \mathrm{PbOf}=100-(\% \mathrm{H} 2 \mathrm{Of}+\% \mathrm{SO} 3 \mathrm{f})$
* $\% \mathrm{H} 2 \mathrm{Of}=(\mathrm{w}+\mathrm{k} * \mathrm{~A}) * 100 /\left(\mathrm{ox}+\mathrm{w}+\mathrm{g}^{*} \mathrm{~A}\right)$
* $\quad \% \mathrm{SO} 3 \mathrm{f}=\mathrm{j}^{*} \mathrm{~A}^{*} 100 /\left(\mathrm{o}+\mathrm{w}+\mathrm{g}^{*} \mathrm{~A}\right)$
* $\quad \% \mathrm{PbOc}=o^{*} 100 /\left(0+j^{*} \mathrm{~A}\right)$
* $\quad \% \mathrm{SO} 3 \mathrm{c}=\mathrm{j}^{*} \mathrm{~A} * 100 /(\mathrm{o}+\mathrm{j} * A)$
* $\mathrm{k}=((100-\mathrm{p}) / 100+.18 * \mathrm{p} / 98) * \mathrm{~g}$
* $\quad \mathrm{j}=.8^{*} \mathrm{p}^{*} \mathrm{~g} / 98$
* $\quad \mathrm{p}=125^{*}(\mathrm{~g}-1)$
$* \quad \mathrm{X} 4=(\% \mathrm{PbOc}-\mathrm{PbOb} 4) /(100-\mathrm{PbOb} 4) * 100$
$* \quad \mathrm{X} 3=(\% \mathrm{PbOc}-\mathrm{PbOb} 3) /(100-\mathrm{PbOb} 3) * 100$
* $\mathrm{F}=80 * \% \mathrm{PbOc} / 223 /(100-\% \mathrm{PbOc})-1$
* $M=100 / \mathrm{H}$
* $\mathrm{H}=\operatorname{sqrt}(3)$
* $\% \mathrm{PbOc}=\mathrm{b} 3 * 100$
* $\% \mathrm{SO} 3 \mathrm{c}=\mathrm{c} 3^{*} 100$
* $\% \mathrm{H} 2 \mathrm{Oc}=\mathrm{a} 3 * 100+.001$
* $\% \mathrm{PbO}=\mathrm{b} 1 * 100$

TABLE 1 (continued)

```
S Rule
* %H2O = a1*100
* %SO3 = c1*100 +.001
* %H2Of= a2*100
* %PbOf = b2*100
* %SO3f = c2*100
* oo = o*(1 + %/100)*223/207
* %PbOco = oo*100/(oo +j*A)
* %SO3co = j*A*100/(0o + j*A)
* %PbOco = b4*100
* %SO3co = c4*100
* X3o = (%PbOco-PbOb3)/(100-PbOb3)*100
* X4o = (%PbOco-PbOb4)/(100-PbOb4)*100
* Fo = 80*%PbOco/223/(100-%PbOco)-1
* PbOb0 = 223/(223 + 80)*100
* SO3b0 = 80/(223 + 80)*100
* PbOb1 = 2*223/(2*223+80)*100
* SO3b1 = 80/(2*223 + 80)*100
* PbOb3 = 4*223/(4*223 + 80)*100
* SO3b3 = 80/(4*223+80)*100
* PbOb4 = 5*223/(5*223+80)*100
* SO3b4 = 89/(5*223 + 80)*100
```

TABLE 2
Calculated phase composition of paste

(continued)

TABLE 2 (continued)

St	Input	Name	Output	Unit	Comment
	0	\% H2Oc			Conditioned composition no Pb oxidation
		\%SO3c	7.0796460		Conditioned composition no Pb oxidation
		X3	13.982301		\%PbO-.-.-3.PbO.PbSO4 no oxidation
		X4	-5.752212		\%PbO-..-.-4.PbO.PbSO4 no oxidation
		F	3.7085202		Nominal formula F.(PbO).PbSO4. no oxidation
		X3o	34.937550		\%PbO------3.PbO.PbSO4 with oxidation
		X4o	20.010671		\%PbO---.--4. $\mathrm{PbO} . \mathrm{PbSO} 4$ with oxidation
		Fo	5.3405797		Nominal formula F.(PbO).PbSO4. with oxidation
		PbOb0	73.597360		$\mathrm{PbO}, \mathrm{SO} 3$ Various $\mathrm{PbSO} 4 \mathrm{~s} \mathrm{~b}=0,1,3,4$
		SO3b0	26.402640		$\mathrm{PbO}, \mathrm{SO} 3$ Various $\mathrm{PbSO} 4 \mathrm{~s} \mathrm{~b}=0,1,3,4$
		PbOb1	84.790875		$\mathrm{PbO}, \mathrm{SO} 3$ Various $\mathrm{PbSO} 4 \mathrm{~s} \mathrm{~b}=0,1,3,4$
		SO3b1	15.209125		$\mathrm{PbO}, \mathrm{SO} 3$ Various $\mathrm{PbSO} 4 \mathrm{~s} \mathrm{~b}=0,1,3,4$
		PbOb3	91.769547		$\mathrm{PbO}, \mathrm{SO} 3$ Various $\mathrm{PbSO} 4 \mathrm{~s} \mathrm{~b}=0,1,3,4$
		SO3b3	8.2304527		$\mathrm{PbO}, \mathrm{SO} 3$ Various $\mathrm{PbSO} 4 \mathrm{~s} \mathrm{~b}=0,1,3,4$
		$\mathrm{PbOb4}$	93.305439		$\mathrm{PbO}, \mathrm{SO} 3$ Various $\mathrm{PbSO} 4 \mathrm{~s} \mathrm{~b}=0,1,3,4$
		SO3b4	7.4476987		$\mathrm{PbO}, \mathrm{SO} 3$ Various $\mathrm{PbSO} 4 \mathrm{~s} \mathrm{~b}=0,1,3,4$
		\%SO3co	5.3549342		Final SO3 \%
		\%PbOco	94.645066		Final $\mathrm{PbO} \%$
		k	. 82857143		Water factor of acid
		j	. 57142857		SO3 factor of acid
		p	50		\% H2SO4 in dil acid
G	. 09090909	a1			H2O coordinate
G	. 90909091	b1			PbO coordinate
G	. 14746544	a2			H2O coordinate
G	. 79481450	b2			PbO coordinate
G	. 05772006	c2			SO3 coordinate
G	. 92920354	b3			PbO coordinate
G	. 07079646	c3			SO3 coordinate
G	. 94645066	b4			PbO coordinate
G	. 05354934	c4			SO3 coordinate

TABLE 3

Mathematical rules for conversion of triangular to cartesian coordinates

```
S Rule
* \(\mathrm{M}=100 / \mathrm{H}\)
* \(\quad \mathrm{H}=\operatorname{sqrt}(3)\)
* \(\quad \mathrm{I} 3=\left(\mathrm{H}^{*} \mathrm{x} 3-\mathrm{y} 3\right) /(100-\mathrm{y} 3)\)
* \(\mathrm{J} 3=200^{*} \mathrm{y} 3 /\left(\mathrm{H}^{*}\left(200-\mathrm{H}^{*} \mathrm{x} 3+\mathrm{y} 3\right)\right)\)
* \(\mathrm{R} 3=\mathrm{y} 3 / \mathrm{x} 3\)
* \(\mathrm{K} 3=200 /(\mathrm{R} 3+\mathrm{H})\)
* \(\quad \mathrm{a} 3=\operatorname{sqrt}\left(\left((\mathrm{K} 3-\mathrm{x} 3)^{\sim} 2+\left(\mathrm{R} 3^{*} \mathrm{~K} 3-\mathrm{y} 3\right)^{\wedge} 2\right) /\left(\mathrm{K} 3^{-2} 2^{*}\left(1+\mathrm{R} 3^{-} 2\right)\right)\right)\)
* \(\quad \mathrm{b} 3=\operatorname{sqrt}\left(\left(\mathrm{y} 3^{\wedge} 2+\left(x 3-\mathrm{M}^{*} \mathrm{I} 3\right)^{\wedge} 2\right) /\left(\left(\mathrm{M}-\mathrm{M}^{*} \mathrm{I} 3\right)^{\wedge} 2+100^{\wedge} 2\right)\right)\)
* \(\quad \mathrm{c} 3=\operatorname{sqrt}\left(\left((\mathrm{x} 3-\mathrm{J} 3)^{\wedge} 2+\left(\mathrm{y} 3-\mathrm{H}^{*} \mathrm{~J} 3\right)^{\wedge} 2\right) /\left((200 / \mathrm{H}-\mathrm{J} 3)^{\wedge} 2+\left(\mathrm{H}^{*} \mathrm{~J} 3\right)^{\wedge} 2\right)\right)\)
* \(a 3+b 3+c 3=1\)
```

TABLE 3 (continued)

```
S Rule
* \(\mathrm{I} 1=\left(\mathrm{H}^{*} \mathrm{x} 1-\mathrm{y} 1\right) /(100-\mathrm{y} 1)\)
* \(\mathrm{J} 1=200 * \mathrm{y} 1 /\left(\mathrm{H}^{*}\left(200 \cdot \mathrm{H}^{*} \mathrm{x} 1+\mathrm{y} 1\right)\right)\)
* \(\mathrm{R} 1=\mathrm{y} 1 / \mathrm{x} 1\)
* \(\mathrm{K} 1=200 /(\mathrm{R} 1+\mathrm{H})\)
* \(\quad \mathrm{a} 1=\operatorname{sqrt}\left((\mathrm{K} 1-\mathrm{x} 1)^{\wedge} 2+(\mathrm{R} 1 * \mathrm{~K} 1-\mathrm{y} 1)^{\wedge} 2\right) /\left(\mathrm{K} 1^{\wedge} 2^{*}\left(1+\mathrm{R} 1^{\wedge} 2\right)\right)\) )
* \(\mathrm{b} 1=\operatorname{sqrt}\left(\left(\mathrm{y} 1^{\wedge} 2+\left(x 1-\mathrm{M}^{*} \mathrm{I} 1\right)^{\wedge} 2\right) /\left(\left(\mathrm{M}-\mathrm{M}^{*} \mathrm{I} 1\right)^{\wedge} 2+100^{\wedge} 2\right)\right)\)
* \(\mathrm{cl}=\operatorname{sqrt}\left(\left((\mathrm{x} 1-\mathrm{J} 1)^{-} 2+\left(\mathrm{y} 1-\mathrm{H}^{*} \mathrm{~J} 1\right)^{\wedge} 2\right) /\left((200 / \mathrm{H}-\mathrm{J} 1)^{\wedge} 2+\left(\mathrm{H}^{*} \mathrm{~J} 1\right)^{\wedge} 2\right)\right)\)
* \(\mathrm{a} 1+\mathrm{b} 1+\mathrm{c} 1=1\)
* \(\quad \mathrm{I} 2=\mathrm{H} * \mathrm{x} 2-\mathrm{y} 2) /(100-\mathrm{y} 2)\)
* \(\mathrm{J} 2=200 * \mathrm{y} 2 /\left(\mathrm{H} *\left(200-\mathrm{H}^{*} \mathrm{x} 2+\mathrm{y} 2\right)\right)\)
* \(\quad \mathrm{R} 2=\mathrm{y} 2 / \mathrm{x} 2\)
* \(\mathrm{K} 2=200 /(\mathrm{R} 2+\mathrm{H})\)
* \(\left.\mathrm{a} 2=\operatorname{sqrt}\left((\mathrm{K} 2-\mathrm{x} 2)^{\wedge} 2+(\mathrm{R} 2 * \mathrm{~K} 2-\mathrm{y} 2)^{\wedge} 2\right) /(\mathrm{K} 2 \wedge 2 *(1+\mathrm{R} 2 \wedge 2))\right)\)
* \(\left.\mathrm{b} 2=\operatorname{sqrt}\left(\left(\mathrm{y}^{2}{ }^{\wedge} 2+\left(\mathrm{x} 2-\mathrm{M}^{*} \mathrm{I} 2\right)^{\wedge} 2\right) /\left(\mathrm{M}-\mathrm{M}^{*} \mathrm{I} 2\right)^{\wedge} 2+100^{\wedge} 2\right)\right)\)
* \(\mathbf{c} 2=\operatorname{sqrt}\left(\left((x 2-\mathrm{J} 2)^{\wedge} 2+\left(\mathrm{y} 2-\mathrm{H}^{*} \mathrm{~J} 2\right)^{\wedge} 2\right) /\left((200 / \mathrm{H}-\mathrm{J} 2)^{\wedge} 2+\left(\mathrm{H}^{*} \mathrm{~J} 2\right)^{\wedge} 2\right)\right)\)
* \(\mathrm{a} 2+\mathrm{b} 2+\mathrm{c} 2=1\)
* \(\mathrm{I} 4=\left(\mathrm{H}^{*} \mathrm{x} 4-\mathrm{y} 4\right) /(100-\mathrm{y} 4)\)
* \(\mathrm{J} 4=200 * \mathrm{y} 4 /\left(\mathrm{H}^{*}\left(200 \cdot \mathrm{H}^{*} \mathrm{x} 4+\mathrm{y} 4\right)\right)\)
* \(\quad \mathrm{R} 4=\mathrm{y} 4 / \mathrm{x} 4\)
* \(\mathrm{K} 4=200 /(\mathrm{R} 4+\mathrm{H})\)
* \(\left.\mathrm{a} 4=\operatorname{sqrt}\left((\mathrm{K} 4-\mathrm{x} 4)^{\wedge} 2+(\mathrm{R} 4 * \mathrm{~K} 4-\mathrm{y} 4)^{\wedge} 2\right) /(\mathrm{K} 4 \wedge 2 *(1+\mathrm{R} 4 \wedge 2))\right)\)
* \(\mathrm{b} 4=\operatorname{sqrt}\left(\left(\mathrm{y} 4^{\wedge} 2+\left(\mathrm{x} 4 \cdot \mathrm{M}^{*} \mathrm{I} 4\right)^{\wedge} 2\right) /\left(\left(\mathrm{M} \cdot \mathrm{M}^{*} \mathrm{I} 4\right)^{\wedge} 2+100^{\wedge} 2\right)\right)\)
* \(\quad \mathrm{c} 4=\operatorname{sqrt}\left(\left((\mathrm{x} 4-\mathrm{J} 4)^{\wedge} 2+(\mathrm{y} 4-\mathrm{H} * \mathrm{~J} 4)^{\wedge} 2\right) /\left((200 / \mathrm{H}-\mathrm{J} 4)^{\wedge} 2+\left(\mathrm{H}^{*} \mathrm{~J} 4\right)^{\wedge} 2\right)\right)\)
* \(a 4+b 4+c 4=1\)
```

TABLE 4
Calculated cartesian coordinates

St	Input	Name	Output	Unit	Comment
G	52.486388	x1			Model Name TRI ALL Import TEMP 3.TK for a, b, c values from DO NOT SAVE AFTER SOLVE
G	90.909091	y1		${ }_{\mathrm{g}}^{\mathrm{g}}$	
G	52.555149	x 2		g	
G	79.983282	y2		g	
G	61.631885	x3		g	X Cartesian Coordinate
G	93.250444	y3		g	Y Cartesian Coordinate
G	60.680001	x4		g	
G	94.899155	y4		g	
	. 09090909	a1			H2O coordinate
	. 90909091	b1			PbO coordinate
	. 14494265	a2			H2O coordinate
	. 79983282	b2			PbO coordinate
	. 05522453	c2			SO3 coordinate
	. 93250444	b3			PbO coordinate
	. 06749556	c3			SO3 coordinate
	. 94899155	b4			PbO coordinate
	. 05100845	c4			SO3 coordinate

Reference

1 H. B. Stephenson, C. L. Hixson, H. S. Long, J. S. Bryson, J. D. Purdum and E. J. Richie, Pastes and Grids for the Lead-Acid Battery, ILZRO Project LE-82/LE-84, Final Report, Dec. 31, 1971, Int. Lead Zinc Res. Org. Inc.

Appendix

Triangular to cartesian coordinate conversion
Consider Fig. 1
Intermediate defined variables:
$I=\frac{\alpha(\sqrt{ } 3 x 1-y 1)}{(\sqrt{ } 3 \alpha-y 1)}$
$J=\frac{2 \sqrt{ } 3 \alpha}{(y 1-\sqrt{ } 3 x 1+2 \alpha \sqrt{ } 3)}$
$K=\frac{2 \sqrt{ } 3 \alpha}{(R+\sqrt{ } 3)}$
$R=\frac{y 1}{x 1}$
Equation of a straight line:
$y=m x+c$
Eqn. line BT^{\prime}
$m=\frac{(\sqrt{ } 3 \alpha-y 1)}{(\alpha-x 1)} ; c=\frac{\alpha(y 1-\sqrt{ } 3 \times 1)}{(\alpha-x 1)}$
Therefore
$y_{\mathrm{BT}}=\frac{(\sqrt{ } 3 \alpha-y 1)}{(\alpha-x 1)} x+\frac{\alpha(y 1-\sqrt{ } 3 x 1)}{(\alpha-x 1)}$
Eqn. line CR
$m=\frac{y 1}{(x 1-2 \alpha)} ; \quad c=\frac{-2 \alpha y 1}{(x 1-2 \alpha)}$
Therefore,
$y_{\mathrm{CR}}=\frac{y 1}{(x 1-2 \alpha)} x+\frac{-2 \alpha y 1}{(x 1-2 \alpha)}$
Eqn. line AS
$m=\frac{y 1}{x 1} ; c=0$

Therefore,
$y_{\mathrm{AS}}=\frac{y 1}{x 1} x$
Eqn. line $A B$
$m=\sqrt{ } 3 ; c=0$
Therefore,
$y_{\mathrm{AB}}=\sqrt{ } 3 x$
Eqn. line AC
$m=0 ; c=0$
Therefore,
$y_{\text {AC }}=0$
Eqn. line BC
$m=-\sqrt{ } 3 ; c=2 \sqrt{ } 3 \alpha$
Therefore,
$y_{\mathrm{BC}}=-\sqrt{ } 3 x+2 \sqrt{ } 3 \alpha$
Coordinates
Point R
Meeting point lines $A B$ and $C R$
Solving eqns. (2) and (4) simultaneously
$R_{(x, y)}=(J, \sqrt{ } 3 J) \quad\{$ eqn. (B) $\}$
Point S
Meeting point lines AS and BC
Solving eqns. (3) and (6) simultaneously
$S_{(x, y)}=(K, R K) \quad\{$ eqns. (C), (D) $\}$
Point T
Meeting point lines AC and BT
Solving eqns. (1) and (4) simultaneously
$T_{(x, y)}=(I, 0) \quad\{e q n .(A)\}$
Fractional composition
$a=\frac{P S}{A S} \longrightarrow a^{2}=\frac{P S^{2}}{A S^{2}}$
$a^{2}=\frac{\left\{(K-x 1)^{2}+(R K-y 1)^{2}\right\}}{\left(K^{2}+R^{2} K^{2}\right)}$

$$
b=\frac{P T}{B T} \longrightarrow b^{2}=\frac{P T^{2}}{B T^{2}}
$$

$$
b^{2}=\frac{\left\{\left(I-x_{1}\right)^{2}+y_{1}^{2}\right\}}{\left\{(I-\alpha)^{2}+(\sqrt{ } 3 \alpha)^{2}\right\}}
$$

$$
c=\frac{P R}{C R} \longrightarrow c^{2}=\frac{P R^{2}}{C R^{2}}
$$

$$
c^{2}=\frac{\left\{\left(J-x_{1}\right)^{2}+\left(\sqrt{ } 3 J-y_{1}\right)^{2}\right\}}{\left\{(J-2 \alpha)^{2}+(\sqrt{ } 3 J)^{2}\right\}}
$$

